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ABSTRACT 

 SiC fiber-bonded ceramics (SA-Tyrannohex™: SA-THX) diffusion-bonded with 

Ti/Cu metallic interlayers were investigated. Thin samples of the ceramics were prepared with 

a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was 

studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition 

to conventional microstructure observation, for detailed analysis of reaction compounds in 

diffusion-bonded area, we performed STEM-EDS measurements and selected area electron 

diffraction (SAD) experiments. The TEM and STEM experiments revealed the 

diffusion-bonded area was composed of only one reaction layer, which was characterized by 

TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the 

SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding 

strength. 

 

INTRODUCTION 

 Silicon carbide (SiC) composite materials are attractive materials for applications in 

high-temperature and extreme environments because of their excellent mechanical properties, 

oxidation resistance, and thermal stability. In particular, one robust ceramic SA-Tyrannohex™ 

(SA-THX), which has a structure of highly ordered, close-packed, hexagonal columnar fibers 

of crystalline β-SiC bonded with thin layers of interfacial carbon1,2, is a promising material 

because of its good thermomechanical performance, high strength sustained up to 1600°C, 

and high fracture toughness (1200 J∙m−2 at RT)3. Hence, SA-THX and related SiC-based 

ceramics are currently being developed and tested for a wide variety of applications in 

aerospace and energy4,5. However, the geometrical limitations of SiC ceramics prevent the 

fabrication of large or complex components via hot pressing, CVD, machining, or net-shape 

processing. To fabricate these components from brittle ceramics, simpler units must be joined 

and integrated. Various joining methods have been developed, such as reaction bonding6-8 and 

brazing9,10. Diffusion bonding techniques have also been used and hold much promise11,12. 

 We have applied diffusion-bonded to a variety of SiC parts with various metallic 

interlayers13-16. We also obtained good diffusion bonding in SA-THX through the use of a 

10-μm-thick Ti interlayer and fibers parallel to the interlayer 15. 

Recently, to reduce the temperature of diffusion bonding processes, we attempted to 
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use Ti/Mo and Ti/Cu foils as metallic interlayers17,18. In the case of Ti/Mo our process 

achieved metallurgically sound joints, but the results of a Knoop test suggested that the joint 

area contained some weak areas and microscale cracking was observed17. We also reported 

that the Ti5Si3Cx phase generated by diffusion bonding had a large coefficient of thermal 

expansion (CTE), which contributed to the microscale cracking16,18. Conversely for the case 

of Ti/Cu no defects, such as microscale cracking, were observed around the diffusion-bonded 

area. Furthermore, the Knoop hardness of the joint area measured for Ti/Cu stability showed a 

higher strength than that based on Ti/Mo. The area diffusion bonded with Ti/Cu showed a 

different joint microstructure from that of Ti/Mo17. Therefore, to reveal the bonding 

mechanism, which exhibits a high strength in Ti/Cu interlayer, we investigated the 

microstructure around diffusion-bonded area. 

For the microstructure observations by transmission electron microscopy (TEM) and 

scanning TEM (STEM), we prepared thin samples of the diffusion bond with focused ion 

beam (FIB) milling. In addition to conventional microstructure observations, we performed 

detailed analysis of the reaction compounds in the diffusion-bonded area with STEM- 

energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAD). On 

the basis of the results obtained by TEM and STEM analysis, the process of formation of the 

joint microstructure was discussed. 

 

EXPERIMENTAL 

 SA-Tyrannohex™ (SA-THX) SiC fiber-bonded ceramic was obtained from Ube 

Industries (Ube, Japan). The material was composed of SA-Tyranno fiber™ bundles in an 

eight-harness satin weave, with fibers oriented in parallel and perpendicular directions. Ti foil 

(10 μm) and Cu foil (5 μm) were obtained from Goodfellow Corporation (Glen Burnie, MD, 

USA). Before joining, all materials were ultrasonically cleaned in acetone for 10 min. Joints 

were diffusion bonded at 1200 °C for 4 hours under a pressure of 30 MPa in vacuum. For 

joints involving the Ti/Cu bilayers, three sheets of Cu foil were sandwiched by two sheets of 

Ti foil as illustrated in Fig. 6(a). Detailed fabrication procedures are reported elsewhere17. 

 STEM and STEM-EDS measurements were performed with a Hitachi HD-2700. 

TEM and SAD were performed with a JEOL JEM-2000FX. All samples for TEM and STEM 

were prepared with a FIB (Hitachi FB-2200), which allowed us to examine precisely selected, 

clean, and diffusion-bonded areas with low-damage. Detailed conditions of the FIB process 

are described in the next chapter. 

 

RESULTS AND DISCUSSION 

Preparation of Thin Samples from Diffusion Bonding 

 We fabricated thin samples for TEM/STEM observation with a FIB micro-sampling 

technique. Fig. 1 shows scanning ion microscope (SIM) images of the diffusion-bonded area 

obtained from the FIB. The reacted layers and their boundaries are clearly shown in Fig. 1(a). 

No cracks or void were observed around the reacted layer. Similar microstructures were 



imaged by SEM [17]. We selected a thin sample from the joint area which included the 

reaction layer and a part of the SA-THX substrate (Fig. 1(b)), and processed the sample to be 

thin enough for TEM observations.  

 

 

 

 

 

 

 

 

 

 

 

STEM Imaging 

 Fig. 2 shows STEM images of the diffusion bond acquired in secondary electron 

(SE), bright-field (BF), and high angle annular dark-field (HAADF) STEM modes, 

respectively. The samples were thin enough to observe the microstructure of the entire 

diffusion-bonded area and the quality of the bonding appeared to be good. In the HAADF 

image, some dark contrast in SA-THX was attributed to residual carbon or fiber boundaries 

[18]; apart from the marks induced in the FIB process, no notable defects were observed. 

Some features should be noted in the diffusion bonded area. Several reaction layers were 

observed in the diffusion bonded Ti/Mo interlayer [17,18]; however, in the case of Ti/Cu, only 

one reaction layer was apparent in the diffusion bond. A part of the reaction compound leaked 

into the boundaries of the SA-THX, but no elemental diffusion from the reaction layer side 

into the SiC grains was observed. This result suggested that the diffusion bonding process 

with Ti/Cu interlayer proceeded mainly via a liquid state rather than diffusion in solid. 

Furthermore, the reaction layer was composed of grains of various sizes and a monolithic 

matrix, which filled the grains without gap. The reaction layer had few cracks or voids and 

formed a clean interface with the SA-THX substrate. 

  

Figure 1. Scanning ion microscope (SIM) images of the diffusion bond obtained with the FIB. 

(a)Cross-sectional image and (b) image of the area where the thin sample was fabricated. 

Figure 2. STEM images of diffusion bond: (a) SE STEM mode, (b) BF STEM mode, and 

(c) HAADF STEM mode. 



STEM-EDS Mapping 

 To investigate the elemental composition of the grains and the matrix in the reaction 

layer, we performed STEM-EDS mapping. As shown in Fig. 3, the elemental distribution of 

Si, Ti, and Cu could be clearly divided into two areas of the grains and the matrix. The grains 

appeared to contain more Ti and C whereas the matrix contained more Cu and Si. On the basis 

of these results, the reaction layer was likely composed of TiC grains and a matrix of a Cu-Si 

compound. Although the elemental distribution of C appeared not to differ much, carbon 

located in the nearby SA-THX substrate might have affected the EDS measurement or the 

matrix may have contained some carbon. Some previous research had reported that a certain 

amount of SiC can dissolve into melted copper and fine glassy carbon precipitates in Cu-Si 

solid solution19. 

 

 

 

 

 

TEM Imaging and SAD analysis 

 For more detailed analysis of the reaction compound, we investigated its crystal 

structure by TEM. We acquired SAD patterns from regions of the grains and matrix in the 

reaction layer. Fig. 4 shows the TEM images and SAD patterns acquired from one grain, 

indicated by a circle. Each SAD pattern featured a reciprocal lattice pattern from a simple 

NaCl-type structure, which was consistent with the standard TiC structure.  

 

Figure 3. HAADF-STEM image of the reaction layer and elemental mapping images obtained 

by STEM-EDS. 



 

 

 

 Although the crystal structure of the grains in the reaction layer was easily 

characterized it was more difficult to characterize the crystal structure of the matrix. As shown 

in Fig. 5, the SAD patterns acquired from the matrix region were complex. The results of the 

STEM-EDS suggested the matrix featured a Cu-Si system, and Cu3Si is a potential candidate 

material. It has been reported that Cu3Si has a long-period structure which appears as 

superlattice reflections in its SAD patterns20,21. The SAD patterns of the matrix were similar 

to those of Cu3Si; however, further studies are required to clarify the matrix structure. 

 

 

 

 

Formation of the Joint Microstructure 

 TEM and STEM analysis revealed the reaction layer of the diffusion bonding was 

composed of TiC precipitate in a Cu-Si compound matrix. The results described above also 

indicate the formation mechanism of the joint microstructure formed from the Ti/Cu interlayer. 

Figure 4. (a, b) TEM micrographs and (b, c) SAD patterns obtained from grains (1) and (2). 

Figure 5. (a) TEM micrograph and (b, c) SAD patterns obtained from Cu-Si matrix region. 



At the maximum temperature in the diffusion bonding process, the Cu interlayer melts, and 

the titanium interlayer and SiC (SA-THX) substrate partially dissolve in the molten metal. In 

the cooling process, TiC grains precipitate from the molten metal, and as the temperature 

decreases the grains gradually grow by absorbing Ti and C atoms from the molten metal. At 

the end of the process, the molten metal completely solidifies becoming a monolithic Cu-Si 

compound. Thus the microstructure of TiC grains embedded in a monolithic Cu-Si compound 

was formed in this way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the CTE value of the reaction compound, it is favorable for TiC grains to 

constitute most of interlayer because TiC has a CTE value relatively close to that of SiC. 

Furthermore, because TiC has a cubic crystal structure, TiC will expand and contract 

isotropically. Although the exact CTE value of the Cu-Si compound is not known, Cu metal 

generally exhibits relatively large CTE values. However, because Cu metal also exhibits a low 

Young modulus, the soft Cu-based compound formed in the matrix of the joint area may be 

advantageous for the diffusion bonding quality. 

  

Figure 6. Change in the microstructure of interface of SA-THX/Ti/Cu/Ti/SA-THX 

(a) before processing, (b) at maximum temperature (1200°C), (c) in cooling, and 

(d) after processing 



CONCLUSIONS 

 SA-THX was diffusion bonded with Ti-Cu foil interlayers. The diffusion bond 

regions were examined by TEM and STEM imaging for samples prepared by FIB. The results 

are summarized as follows. 

(1) We selected thin samples from the bonded area of diffusion bonded SA-THX and 

processed these using a FIB micro-sampling technique. The prepared samples were 

sufficiently thin and showed low enough damage to allow detailed evaluation by TEM and 

STEM. 

 

(2) The microstructure of the diffusion bonded area was observed by STEM and TEM. The 

composition and crystal structures of the reaction compound were investigated by 

STEM-EDS and SAD methods. The reaction layer of the diffusion bonding was composed 

of TiC precipitates in a Cu-Si compound matrix. 
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